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Abstract

For wafer based silicon solar cells, the combination of

amorphous/crystalline silicon (a-Si:H/c-Si) heterojunction emitters
(SHJ) [1] and back-contacted back-junction solar cell concepts
(BCBJ) [2] offer a very high efficiency potential of around 24%.
Stangl et al. proposed a relatively simple and therefore attractive
cell concept comprising a two level metallization isolated by an
insulation layer. The emitter layer consisting of doped amorphous
silicon with a thickness of several nm and the emitter metallization
layer comprise circular openings where the back surface field
layers and the respective metallization establish contact to the
absorber.

In this work the potential of inkjet printing for the deposition
of the isolation layer with photoresists or other polymeric fluids is
evaluated. Challenges are the required placement precision and
the feature size. In order to produce circular openings of the order
10 um, the drop formation has to be optimized, and the ink
spreading on both surfaces - on the aluminum emitter and on the
silicon wafer substrate - have to be controlled.

Introduction

For wafer based silicon solar cells, the combination of
amorphous/crystalline silicon (a-Si:H/c-Si) heterojunction emitters
(SHJ) [1] and back-contacted back-junction solar cell concepts
(BCBJ) [2] offer a very high efficiency potential of around 24%
[3] due to the high ¥, values enabled by silicon heterojunctions in
conjunction with the excellent short circuit current of BCBJ solar
cells. In addition, one-sided a-Si:H/c-Si hetero contact systems can
be relevant in crystalline thin-film Si photovoltaics if the bulk
carrier lifetime in the thin film absorber material is high enough,
such that the cell benefits from the reduced surface recombination
at the heterojunction.

Figure 1 displays schematic cross sections of the solar cell
investigated in this approach as proposed by Stangl et al (Point
Rear Contacted Amorphous-crystalline Silicon Heterojunction).
The front side is coated with an anti-reflection coating which also
serves as passivation layer. The crystalline silicon substrate (here
n-type, polarities are interchangeable) is textured with random
pyramids on the front side in order to further enhance the
absorption of the incoming light. The emitter layer consists of
(p/n)-doped amorphous silicon with a thickness of several nm.
Amorphous silicon layers provide an excellent surface passivation
of the crystal and a good selectivity regarding charge carrier
collection, enabling the aforementioned high V., values. The
emitter is contacted with a first metal layer. Emitter and
metallization layer comprise circle openings where the back
surface field layer, consisting of n-doped amorphous silicon and
the respective metallization establish contact to the absorber (see
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horizontal cross section on the left of Figure 1). Thus the two
polarities must be isolated in order to avoid parasitic current paths
from the emitter metallization to the BSF metallization, which
significantly decrease the solar cell performance.

The fabrication process is shown schematically in Figure 2. After a
single sided texturization, realized by masking one side against the
wet-chemical texturization bath consisting of potassium hydroxide
and isopropanole the front side is coated with a SiN, antireflection
coating for passivation and antireflection purposes.
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Figure 1: Cell architecture of PRECASH solar cell concept. The emitter (blue)
and back-surface field (red) is formed by amorphous silicon layers of a thick-
ness in the range of 10nm. The emitter is contacted with a first layer of metal.
The emitter layer and its metallization comprise circle openings where the
back-surface field layer and its metallization contact the absorber. Between
the first metal layer and the amorphous BSF-layer an isolation layer is
required.

After a cleaning step the amorphous emitter layer is deposited on
the rear side by plasma enhanced chemical vapour deposition
(PECVD). Subsequently the emitter is metalized with aluminium
by physical vapour deposition (PVD). The layer stack is masked
by photolithography and etched such that circle openings are
created. The first metal layer is then covered with an isolation
layer and the amorphous silicon back-surface field layer is
deposited by PECVD at around 200°C. The last step comprises the
physical vapour deposition of the second metal layer for BSF
metallization.

This work aims at finding means of replacing the
photolithographic step for generating the circular openings as well
as depositing the isolation layer. The deposit should - after
appropriate baking - provide electrical isolation of the first metal
layer and BSF-layer and the second metal layer as well as vacuum
stability (no outgassing at temperatures lower than 200°C to avoid
contamination of PECVD-chambers).

Inkjet printing offers a variety of benefits as well as challenges due
to its purely additive nature. The benefits present themselves in the
ability to dispense a variety of materials from the liquid phase with
a negligible amount of waste as well as fully digital material
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Figure 2: Schematic process flow (simplified). In the left column the
technologies used for the process steps on the right are indicated.

deposition within the resolution of the process. The challenges are
typically found in the amount of the functional material present in
the inks, due to the viscosity limits of drop-on-demand (DoD)
inkjet, the drying characteristics in the printhead as well as
spreading and drying nature of the deposit on the substrate.

Liquid phase materials for the generation of insulation layers are
abundant in the filed of photolithography and spin coating, where
it is essential to evaporate the carrier solvent of the material
quickly in order to generate homogeneous thin films. Applying
such materials using DOD inkjet technology is typically
complicated by the drying of these materials, resulting in either a
change in the acoustic impedance at the nozzle or the physical
blockage of the channel, calling for elaborate maintenance of the
printhead and, therefore, downtime. Alternatives can be found in
the area of graphic arts, where solvent inks formulations as well as
UV-curable ink systems have been applied for many years. These
two ink systems with insulating properties in the cured state are
evaluated here for the application in the generation of insulating
layers for back-contacted silicon heterojunction solar cells. The
paper discusses their properties with respect to their compatibility
with the DoD technology, their latency behavior and jetting
characteristics.

Experimental

A solvent-based fluid AZ520D (Micro Chemicals, Germany) as
well as a UV curable resist, InkEpo (Micro Resist Technology,
Germany) were used in the study. Viscosity adaptation was carried
out using PGMEA and butyl-l-lactate (Sigma Aldrich, Germany).
Shear and temperature dependent rheology of the fluids was
assessed using a plate-cone rheometer (CSL2-100, TA
Instruments, USA).

Jetting experiments were conducted using a Xaarl126 printhead
with a nominal droplet volume of 50 pL. Droplet formation was
studied using an in-house developed stroboscopic tool using sub-
microsecond length light pulses from a triggered red high power
LED. Temperature of the fluid was measured using the built-in
temperature sensor of the printhead and controlled using a Peltier
element. The meniscus pressure was set to -8 mbar.
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Rheology

Typical viscosities of the solvent-based were found to be in the
range of 50 mPas at room temperature, while typical viscosities
jetted from Xaar-type printheads are in the range of 8-12 mPas in
order to reduce the viscosity-induced damping of the acoustic
energy in the channel and enable acoustic firing. While elevated
temperatures may be utilized to reduce the viscosity, the fluid
under consideration was highly volatile. Therefore, elevating the
temperature of the fluid will increase its vapor pressure and, hence,
increase the possibility of nozzle clogging [4].

The issue was, therefore, approached by adding appropriate
solvents with high boiling points. This decreased the viscosity at
room temperature at the expense of depositing a reduced amount
of functional material at a given drop volume-DPI combination.
Figure 3 shows the depletion of the viscosity of 4Z520D as the
weight percentage of the added solvent increases. One can clearly
discern the more rapid reduction using PGMEA than with butyl-1-
lactate, due to its low viscosity nature. Additions of approx.
15 wt% PGMEA show viscosities optimal for Xaar-type DoD
printheads. However, its boiling point is too low and, therefore,
butyl-l-lactate appeared a more viable option for omitting
deviations induced by latency, which is refers to the time to allow
the printhead to idle with effortless subsequent start-up. Figure 3
also shows the behavior 4Z520D with butyl-l-lactate as added
solvent. The reduction of the room temperature viscosity is less
pronounced, due to the characteristic viscosity of the solvent. The
trend indicates that jetable values will be reached at 45 to 50 wt%
additional solvent.
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Figure 3: Viscosity vs. amount of added solvent for AZ520D at room
temperature [shear stress constant at 1500 s, 6 cm diameter, 1 degree]

Figure 4 shows the temperature response of the UV-curable system
InkEpo. In contrast to the fluid discussed above a modification of
the ink is not necessary, as these monomer-based systems exhibit
rather low volatility and lend themselves to viscosity adjustment
via temperature.
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Figure 4: Temperature viscosity characteristic for InkEpo [shear stress
constant at 1500 s", 6 cm diameter, 1 degree]

This system exhibits an additional advantage as a consequence of
its higher viscosity at room temperature. Due to its high surface
area to volume ratio, the droplet cools down during its trajectory
from the nozzle to substrate. This increases the viscosity and,
therefore, results in a higher amount of kinetic energy dissipated in
viscous friction and, hence, allows for finer features. It has been
shown in the literature, that evaporation may be used to reduce the
feature size with solvent-based systems [5], however, at the
expense of higher throw distances, which may reduce placement
accuracy due to enhanced Stokes friction as well as increased
influence from intrinsic angle deviations.

Jetting Experiments

Droplet formation was observed using a special waveform. As the
acoustics of the channel are connected to the efficiency of ejection,
as well as the propagation of perturbations causing the
disintegration of the emerging jet, changing the overall length of
the driving signal by means of the sample clock timing is expected
to influence droplet speed and satellite formation.

The response of the actuator to these changes using a mixture of
60 wt% AZ520D and 40 wt% butyl-l-lactate is shown in Figure 5.
The parabolic nature of the velocity profile as a function of sample
clock timing clearly illustrates the optimization of the driving
signal to the acoustics of the channel. The depiction, furthermore,
illustrates crosstalk phenomena, where the droplet velocity
increases when firing channels simultaneously and the velocity
reduces when applying firing pulses to adjacent phases or distant
nozzles of the same phase [6], resulting in a deviating landing
position. Depending on the substrate velocity applied in the
process this phenomenon has to be minimized in order to have
highly reliable placement accuracies. The slight misalignment in
the maxima originates from insufficient cooling of the actuator
during 100% firing experiments. The drop in viscosity resulted in a
reduced compliance of the actuator, which lowers the effective
speed of sound in the channel [7].
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Figure 5: Response curves a mixture of 60 wt% AZ520D and 40 wt% Butyl-I-
lactate

Figure 6 shows the jetting performance of the mixture at different
sample clock timings, when the applied voltage to the piezoelectric
walls was tuned to give 6 m/s. As can be seen, shorter timings not
only give reduced droplet velocities, but also reduce the number of
satellites, which is highly desirable. With better matching between
the electrical driving signal and the acoustics of the channel,
longer ligaments are observed, which disintegrate erratically due
to perturbation and the superimposed residual energy.
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Figure 6: Jetting photographs of a mixture of 60 wt% AZ520D and 40 wt%
Butyl-I-lactate at different sample clock timings [room temperature]

Figure 7 illustrates the stability of droplet formation at 7, 6 and
5 kHz, which relates to the maximum frequency of the waveform-
sample clock timing constellation. Again, low sample clock
timings enable a stable ejection when firing 100% patterns. The
transition phase towards higher droplet velocities is characterized
by occasional loss of channels, which makes sample clock timings
of 1100 ns and 1300 ns unfavorable for printing of functional
layers. Higher sample clock timings show stable behavior at the
highest possible frequency, but exhibit an erratic jitter, which may
lead to grouping of droplets or discontinuity in line features.
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Interestingly, the longest timing at its full frequency shows stable
behavior, indicated by the sharp projection of the leading drop, but
preserves the disadvantageous characteristic of a high satellites
density.

The UV-curable fluid, /nkEpo, was subjected to similar iterations
as discussed above. However, no optimal settings could be found
using the developed waveform (cf. Figure 8 (a)). Therefore, a
waveform generating a special time-dependent pressure profile
was developed for the fluid, based on the assessed optimal sample
clock timing of 1300 ns. Figure 8 (b) shows the result of the
waveform optimization, exhibiting well-defined, satellite-free
droplets with a high velocity of 4.5 m/s. Even though satellite
droplets could be omitted by thorough waveform optimization,
misting, i.e. the formation of sub-picoliter droplets with low
momentum, prevailed. These may be critical as the resulting
topography during etching will obstruct pinhole-free thin film
formation of subsequent layers.
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Figure 7: Stablllty graph ofa mlxture of 60 Wt% AZ520D and 40 wt% Butyl-I-
lactate jetting at different sample clock timings [room temperature, 100
images overlaid, frame rate 30 Hz]
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Latency times were investigated by stalling the printhead for
defined amounts of seconds and observing the number of lost or
deviating channels on the screen. Significant channel loss was
observed for the solvent-based system for stalling times greater
than five seconds, making this printhead-ink combination non-
applicable on industrial scale. Latency issues were not observed
with UV- based ink, resulting from its low volatile compound
concentrations.

(@) ' (b)
Figure 8: Jetting photographs of InkEpo with (a) the standard waveform and
(b) an optimized waveform for this specific fluid [40 °C, sample clock timing

1300]
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Conclusion

The paper presented two possible routes for applying insulation
layers via photoresists by inkjet technology for the application in
back-contacted silicon-heterojunction solar cells was explored.

The solvent-based ink 4Z520D was optimized for rheology by
addition of PGMEA as well as butyl-l-lactate. The resulting
optimized mixture of 60% resist and 40% butyl-l-lactate was
jetable at room temperature and optimum jetting conditions were
found to be 1900 ns. Short latency times of less than 5 seconds
omit the application of the fluid on an industrial scale and calls for
reformulation.

The UV-based system [nkEpo showed no drying due to the low
volatile compound concentration. However, a highly sophisticated
driving waveform was necessary in order to generate satellite-free
droplets at 40 °C with a sample clock timing of 1300 ns and
droplet velocities of 4.5 m/s, allowing for good drop placement at
low substrate velocities.

Film and feature formation with these two systems still have to be
determined on the respective layers. The systems chosen, however,
offer the potential of optimization, as spreading may be controlled
by the application of increased substrate temperatures in case of
the solvent and by the application of appropriate pinning lamps in
case of the UV-curable ink. Careful tuning of these parameters will
ensure pinhole-free film formation as well as minimal feature
sizes.
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